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Abstract

Tall-Skinny QR (TSQR) is an efficient algorithm for
calculating the QR decomposition of m × n matrices
where m≫ n, which is done by recursively performing
QR decomposition on subdivided blocks of the tall and
skinny matrix. Such operations are useful for low-rank
approximation methods, which are replacing more and
more dense linear algebra in both scientific computing
and machine learning fields. The present work focuses
on the implementation of this important algorithm on
Tensor Cores, which are available on the latest NVIDIA
GPUs. We evaluate the speed, accuracy, and stability of
TSQR on TensorCores.

Test Environment

Machine
▶ Intel Xeon CPU E5-2630 v3 @ 2.40GHz x2
▶ NVIDIA Tesla V100-PCIE-16GB
▶ 64GB RAM
▶ Ubuntu 18.04
▶ CUDA 10.1

Input Matrix
▶ m × n matrix (n = 16 fixed)
▶ Randomized with [−1, 1] uniform distribution

Comparison
▶ cuSOLVER (FP32, FP64)

TSQR on TensorCores
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Algorithm 1. TSQR

1. Divide the input matrix A.

2. Calculate QR decomposition for
each subdivided matrices to get
Rs and Qs.

3. Merge consecutive R blocks.

4. Repeat 2-3 until there is only one
R.

5. Calculate Q from Qs which are
calculated in 2-4.

Implementation
▶ Step 2-4
Some QR decompositions can be
calculated in parallel.
⇒ Batched QR

▶ Step 5
Calculate matrix multiplication
implicitly using batched matmul.

Batched QR implementation
▶ Parallel QR Factorization for some
m × n matrices
(16 ≤ m ≤ 32, n ≤ 16)

▶ Householder QR

Algorithm 2. Householder QR

Require: m, n ∈ N,A ∈ Rm×n

Ensure: Q ∈ Rm×m,R ∈ Rm×n

1: Q′⇐ I, R⇐ A
2: for i ⇐ 0 to n − 1 do
3: u⇐ [0 · · · 0 Ri ,i · · ·Rm−1,i]

T

4: ui ⇐ ui ± |u|
5: H⇐ I− 2uu

T

|u|2
6: R⇐ HR
7: Q′⇐ HQ′

8: end for
9: Q⇐ Q′T
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▶ Mixed-precision matrix product
and addition circuit

Refinement using TensorCores

CFP32 ← AFP16BFP16

+ ∆AFP16BFP16

+ AFP16∆BFP16

where

MFP16
narrowing←−−−−− MFP32

∆MFP16
narrowing←−−−−− MFP32 -MFP16

TSQR Implementation

Name Type TensorCore
FP32-TC float Used
FP16-TC half Used
FP32-noTC float Not used
FP16-noTC half Not used

FP32-TC with refinement
▶ m × n (n ≤ 16)

Where to use TensorCore
▶ Calculate H (Algo 2. line 5)
▶ Update Q,R (Algo 2. line 6, 7)
▶ Batched Matmul
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Residual Rqr =
||A−QR||F
||A||F

Orthogonality Evaluation
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Orthogonality Qqr =
||I−QTQ||F√

n

Speed Evaluation
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Performance Evaluation
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Working Memory Size Evaluation
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Computing Time Profile
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The number in brackets corresponds to a line number in Algo 2.

Conclusions

▶ Using TensorCores and refinement, Our approach can
calculate TSQR efficiently without much loss of
accuracy

▶ Our approach provides 3.4x faster performance
compared to cuSOLVER

▶ Our approach reduces about 80% of working memory
compared to cuSOLVER

https://github.com/enp1s0/tsqr-gpu

