
TSQR on TensorCores
Hiroyuki Ootomo1 , Rio Yokota2

1School of Computing, TokyoTech 2Global Scientific Information and Computing Center, TokyoTech https://github.com/enp1s0/tsqr-gpu

Abstract

Tall-Skinny QR (TSQR) is an efficient algorithm for
calculating the QR decomposition of m × n matrices
where m≫ n, which is done by recursively performing
QR decomposition on subdivided blocks of the tall and
skinny matrix. Such operations are useful for low-rank
approximation methods, which are replacing more and
more dense linear algebra in both scientific computing
and machine learning fields. The present work focuses
on the implementation of this important algorithm on
Tensor Cores, which are available on the latest NVIDIA
GPUs. We evaluate the speed, accuracy, and stability of
TSQR on TensorCores.

Test Environment

Machine
▶ Intel Xeon CPU E5-2630 v3 @ 2.40GHz x2
▶ NVIDIA Tesla V100-PCIE-16GB
▶ 64GB RAM
▶ Ubuntu 18.04
▶ CUDA 10.1

Input Matrix
▶ m × n matrix (n = 16 fixed)
▶ Randomized with [−1, 1] uniform distribution

Comparison
▶ cuSOLVER (FP32, FP64)

TSQR on TensorCores

Divide QR
Fact.

QR
Fact.

QR
Fact.

Algorithm 1. TSQR

1. Divide the input matrix A.

2. Calculate QR decomposition for
each subdivided matrices to get
Rs and Qs.

3. Merge consecutive R blocks.

4. Repeat 2-3 until there is only one
R.

5. Calculate Q from Qs which are
calculated in 2-4.

Implementation
▶ Step 2-4
Some QR decompositions can be
calculated in parallel.
⇒ Batched QR

▶ Step 5
Calculate matrix multiplication
implicitly using batched matmul.

Batched QR implementation
▶ Parallel QR Factorization for some
m × n matrices
(16 ≤ m ≤ 32, n ≤ 16)

▶ Householder QR

Algorithm 2. Householder QR

Require: m, n ∈ N,A ∈ Rm×n

Ensure: Q ∈ Rm×m,R ∈ Rm×n

1: Q′⇐ I, R⇐ A
2: for i ⇐ 0 to n − 1 do
3: u⇐ [0 · · · 0 Ri ,i · · ·Rm−1,i]

T

4: ui ⇐ ui ± |u|
5: H⇐ I− 2uu

T

|u|2
6: R⇐ HR
7: Q′⇐ HQ′

8: end for
9: Q⇐ Q′T

TensorCore

FP16

FP16

FP16FP32 /

FP16FP32 /
FP32

▶ Mixed-precision matrix product
and addition circuit

Refinement using TensorCores

CFP32 ← AFP16BFP16

+ ∆AFP16BFP16

+ AFP16∆BFP16

where

MFP16
narrowing←−−−−− MFP32

∆MFP16
narrowing←−−−−− MFP32 -MFP16

TSQR Implementation

Name Type TensorCore
FP32-TC float Used
FP16-TC half Used
FP32-noTC float Not used
FP16-noTC half Not used

FP32-TC with refinement
▶ m × n (n ≤ 16)

Where to use TensorCore
▶ Calculate H (Algo 2. line 5)
▶ Update Q,R (Algo 2. line 6, 7)
▶ Batched Matmul

Residual Evaluation

29 211 213 215 217 219 221 223 225

Matrix size m

10 14

10 11

10 8

10 5

10 2

R Q
R

be
tt

er

FP32-TC
FP16-TC
FP32-cuSOLVER
FP32-TC-Refinement

FP32-noTC
FP16-noTC
FP64-cuSOLVER

Residual Rqr =
||A−QR||F
||A||F

Orthogonality Evaluation

29 211 213 215 217 219 221 223 225

Matrix size m

10 14

10 11

10 8

10 5

10 2

O
Q

R

be
tt

er

FP32-TC
FP16-TC
FP32-cuSOLVER
FP32-TC-Refinement

FP32-noTC
FP16-noTC
FP64-cuSOLVER

Orthogonality Qqr =
||I−QTQ||F√

n

Speed Evaluation

29 211 213 215 217 219 221 223 225

Matrix Size m

10 3

10 2

10 1

100

El
ap

se
d

Ti
m

e
[s

]

be
tt

er

FP32-TC
FP16-TC
FP32-cuSOLVER
FP32-TC-Refinement

FP32-noTC
FP16-noTC
FP64-cuSOLVER

Performance Evaluation

29 211 213 215 217 219 221 223 225

Matrix Size m

0

3

6

9

12

15

Pe
rfo

rm
an

ce
 [

TF
lo

p/
s]

be
tt

er

14.5

9.5

4.4

FP32-TC
FP16-TC
FP32-TC-Refinement

FP32-noTC
FP16-noTC

Working Memory Size Evaluation

29 211 213 215 217 219 221 223 225

Matrix Size m

10 1

100

101

102

103

104

W
or

ki
ng

 M
em

or
y

[M
B]

be
tt

er

FP32-TC
FP16-TC
FP32-cuSOLVER
FP32-TC-Refinement

FP32-noTC
FP16-noTC
FP64-cuSOLVER

Computing Time Profile

0 5000 10000 15000
Clock cycles

FP32-TC-Refinement
FP16-TC
FP32-TC

FP16
FP32

load_u(4)
norm1(4)

update_u(4)
norm2(5)

make_h(5)
update_qr(6,7)

The number in brackets corresponds to a line number in Algo 2.

Conclusions

▶ Using TensorCores and refinement, Our approach can
calculate TSQR efficiently without much loss of
accuracy

▶ Our approach provides 3.4x faster performance
compared to cuSOLVER

▶ Our approach reduces about 80% of working memory
compared to cuSOLVER

https://github.com/enp1s0/tsqr-gpu

