Recovering single precision accuracy from Tensor Cores while surpassing the FP32 theoretical peak performance

Hiroyuki Ootomo and Rio Yokota

IHPCSS 2022

## Achievements of this work

Our SGEMM emulation on Tensor Cores outperforms the theoretical peak performance of FP32 SIMT Core while achieving the same level of accuracy.



Paper: https://arxiv.org/abs/2203.03341

## Contribution (1/2)

- We have found that the rounding for accumulator inside Tensor Cores – RZ – causes the low accuracy of Markidis' method.
- To avoid this rounding, we use FP32 SIMT Core for the accumulation outside of Tensor Cores.



2/4

## Contributions (2/2)

- Improve the accuracy of Markidis' method
  - 1 Calculat expectation mantissa length
  - 2 Found the causes the low accuracy: rounding inside Tensor Core
  - 3 Develop a method to avoid this rounding.
- 4 Reduce the underflow probability during the error correction by scaling error correction terms
- **5** Reduce computational complexity by omitting negligible error correction step
- **6** Demonstrate that our method outperforms the FP32 SIMT Core peak performance and consumes lower consumption while the the same level accuracy.



4/4