
Recovering single precision accuracy
from Tensor Cores while surpassing the
FP32 theoretical peak performance

Hiroyuki Ootomo and Rio Yokota

ECP multiprecision meeting, April 21

Achievements of this work
Our SGEMM emulation on Tensor Cores outperforms the theoretical peak
performance of FP32 SIMT Core while achieving the same level of accuracy.

26 29 212 215 218

k : matmul-(16, 16, k)

10 7

10 6

10 5

10 4

10 3

Er
ro

r

FP32 SIMT
Our method

Markidis' method
TensorCore w/o ErrCor

Accuracy

1000 4000 8000 12000 16000
Matrix size m : matmul-(m, m, m)

0

10

20

30

40

50

60

P
er

fo
rm

an
ce

 [T
Fl

op
/s

] NVIDIA A100

Our method(FP16-TC)
Our method(TF32-TC)

cuBLAS
FP32 peak

Throughput

Paper : https://arxiv.org/abs/2203.03341

1 / 24

https://arxiv.org/abs/2203.03341

Related work

1 Markidis et al. proposed a SGEMM emulation method on Tensor Cores.
NVIDIA Tensor Core Programmability, Performance & Precision,
https://arxiv.org/abs/1803.04014

However, their method does not fit the accuracy of FP32 SIMT Core.

2 Feng et al. claimed to fix the accuracy of Markidis’ method by recovering
the mantissa length kept by the method.
EGEMM-TC: accelerating scientific computing on tensor cores with
extended precision, PPoPP’21
Is it true? We have also investigated the mantissa length problem and
concluded that it is not the problem of Markidis’ method.

2 / 24

https://arxiv.org/abs/1803.04014

Related work : Markidis’ method

Compute a multiplitation of FP32 matrices AF32 and BF32.

1 Split one FP32 matrix into two FP16
matrices

MF16 ← toF16 (MF32)

∆MF16 ← toF16 (MF32 − toF32 (MF16))

2 Multiply and accumulate using Tensor Core

C← (AF16 +∆AF16) (BF16 +∆BF16)

∼ AF16BF16 +∆AF16BF16

+AF16∆BF16 +∆AF16∆BF16

A B

FP32

FP16/TF32

Fast mixed-precision matmul using Tensor Cores

Tensor Core

Accumulator C

3 / 24

Related work

1 Markidis et al. proposed a SGEMM emulation method on Tensor Cores.
NVIDIA Tensor Core Programmability, Performance & Precision,
https://arxiv.org/abs/1803.04014

However, their method does not fit the accuracy of FP32 SIMT Core.

2 Feng et al. claimed to fix the accuracy of Markidis’ method by recovering
the mantissa length kept by the method.
EGEMM-TC: accelerating scientific computing on tensor cores with
extended precision, PPoPP’21
Is it true? We have also investigated the mantissa length problem and
concluded that it is not the problem of Markidis’ method.

4 / 24

https://arxiv.org/abs/1803.04014

Contribution (1/2)

We have found that the rounding
for accumulator inside Tensor
Cores – RZ – causes the low
accuracy of Markidis’ method.

To avoid this rounding, we use
FP32 SIMT Core for the
accumulation outside of Tensor
Cores.

RZ RZ

RN

TensorCore TensorCore

Standard Our method

5 / 24

Contributions (2/2)

Improve the accuracy of Markidis’ method

1 Calculat expectation mantissa length
2 Found the causes the low accuracy: rounding inside Tensor Core
3 Develop a method to avoid this rounding.

4 Reduce the underflow probability during the error correction by scaling error
correction terms

5 Reduce computational complexity by omitting negligible error correction step

6 Demonstrate that our method outperforms the FP32 SIMT Core peak
performance and consumes lower consumption while the the same level
accuracy.

6 / 24

(1/6) The expectation mantissa length of Markidis’ method

[Markidis’ method] MF32 ∼ (MF16 +∆MF16) where
MF16 ← toF16 (MF32) ,∆MF16 ← toF16

(
MF32 − toF32 (MF16)

)
Feng et al. claimed that the Markidis’ method can only keep 20 per 23 bits of the
FP32 mantissa and this is the main cause of the low accuracy of the method.

Is it true?

No.
We found that the expectation mantissa length kept by Markidis’ method is 22.75
per 23 bit.
Furthermore, we showed that this 0.25 bits of mantissa loss is not the main cause
of the low accuracy of Markidis’ method.

Answer from our investigation

7 / 24

(1/6) The expectation mantissa length of Markidis’ method
To show that the mantissa loss is not the main cause of the low accuracy of
Markidis’ method, we conducted a small experiment.

Compared Markidis’ method to a
preprocessed SGEMM, which sets
the LSB of mantissa to zero.

By this preprocess, the expectation
of mantissa length becomes 22.5
bits (< 22.75 bits)

The accuracy of Markidis’ method
is worse than this preprocessed
SGEMM.

⇒ The 0.25 bits of mantissa loss is not
the (main) cause of the low accuracy of
Markidis’ method.

26 29 212 215 218

k : matmul-(16, 16, k)

10 7

10 6

10 5

10 4

10 3

M
ax

 re
la

tiv
e

er
ro

r

FP32 SIMT
LSB=0 FP32

Markidis' method

8 / 24

(2/6) Cause of Low Accuracy: Rounding Inside Tensor Core

Made two types of Tensor Cores
emulators which compute
AFP16BFP16 +CFP32 using

1 RN in CFP32 addition.
2 RZ in CFP32 addition.

The accuracy of Markidis’ method
using “RZ in CFP32 addition” is
similar to the real Tensor Cores. 26 29 212 215 218

k : matmul-(16, 16, k)

10 7

10 6

10 5

10 4

10 3

M
ax

 re
la

tiv
e

er
ro

r

FP32 SIMT
RN in CF32 addition

Markidis' method
RZ in CF32 addition

9 / 24

(3/6) Avoiding the Rounding Inside Tensor Core

We use FP32 SIMT adder to
compute the CFP32 addition using
RN.

This method avoids the direct RZ
for CFP32 addition. RZ RZ

RN

TensorCore TensorCore

Standard Our method

10 / 24

(3/6) Avoiding the Rounding Inside Tensor Core

With this approach, we improved the accuracy of Markidis’ method.

26 29 212 215 218

k : matmul-(16, 16, k)

10 7

10 6

10 5

10 4

10 3

Er
ro

r

FP32 SIMT
Our method

Markidis' method
TensorCore w/o ErrCor

11 / 24

(4/6) Reducing Underflow Probability with Scaling
One computation underflows with high probability in Markidis’ method.

MF16 ← toF16 (MF32)

∆MF16 ← toF16
(
MF32 − toF32 (MF16)

)︸ ︷︷ ︸
This computation

We have investigated the underflow and gradual underflow probabilities.

2 15 2 10 2 5 20 25 210 215

|vF32| (s.t. 2ev |vF32| < 2ev + 1)

0.0

0.5

1.0

Pr
ob

ab
ilit

y

Theoretical Pu + gu(ev)
Theoretical Pu(ev)

Experimental Pu + gu(ev)
Experimental Pu(ev)

Pu+gu :
The underflow and gradual
underflow probability.

Pu :
The underflow probability.

12 / 24

(4/6) Reducing Underflow Probability with Scaling

Markidis’ method

MF16 ← toF16 (MF32)

∆MF16 ← toF16 (MF32 − toF32 (MF16))

C ∼ AF16BF16 +∆AF16BF16 +AF16∆BF16 +∆AF16∆BF16

Our prototype method scales the ∆MF16 computation.

MF16 ← toF16 (MF32)

∆MF16 ← toF16
(
(MF32 − toF32 (MF16))×211

)
C ∼ AF16BF16 + (∆AF16BF16 +AF16∆BF16) /2

11 +∆AF16∆BF16/2
11×2

The “11” comes from the mantissa length of FP16 with implicit one bit,
10 + 1 = 11.

13 / 24

(4/6) Reducing Underflow Probability with Scaling
The comparison of representation accuracy and range.

Markidis’ halfhalf : Represents one FP32 using two FP16s
Our halfhalf : Markidis’ halfhalf + scaling.
Our tf32tf32 : Our halfhalf using TF32 (e8m10) instead of FP16.

2 150 2 120 2 90 2 60 2 30 20 230 260 290 2120

Value

10 7

10 5

10 3

10 1

Re
la

tiv
e

er
ro

r

be
tte

r

FP32
Our tf32tf32

TF32
FP16

Our halfhalf
Markidis's halfhalf

14 / 24

(5/6) Reducing computational complexity

Our prototype method

C ∼ AF16BF16 + (∆AF16BF16 +AF16∆BF16) /2
11+∆AF16∆BF16/2

11×2

:::::::::::::::::::::

Our final method omits “+∆AF16∆BF16/2
11×2

:::::::::::::::::::::
” since the effect of this

error correction computation is negligible to the FP32 23 bits of mantissa.

C ∼ AF16BF16 + (∆AF16BF16 +AF16∆BF16) /2
11

15 / 24

Summary: Comparison of our method and Markidis’ method

A B

FP32

FP16/TF32

Fast mixed-precision matmul using Tensor Cores

Tensor Core

Accumulator C

Markidis’ method

A B

FP32

FP16/TF32

C

Tensor Core

0

Accumulator

Accumulator

/ 2048

* 2048 * 2048

RN

Our method

16 / 24

(6/6) Evaluation

We have incorporated our method into NVIDIA CUTLASS 2.5.1 to use the high
performance functions, e.g. memory blocking strategies and thread allocations.

cutlass halfhalf : Uses FP16 Tensor Cores

cutlass tf32tf32 : Uses TF32 Tensor Cores

Labels

NVIDIA A100 40GB SXM4

CUDA 11.3

Evaluation environment

1NVIDIA includes 3xTF32 SGEMM emulation into CUTLASS 2.8 independently from us.

17 / 24

Accuracy evaluation (1/2)
We evaluate our implementation using various exponent distribution matrices.

urand(0, 1) exp_rand(-15,0) randtlr spatial cauchy 102

100

10 2

10 4

10 6

10 8

Test matrices

RelativeResidual = ||Cref −C||F/||Cref||F ,

where || · ||F is Frobenius norm and Cref is a reference computation result in FP64.

Error evaluation

18 / 24

Accuracy evaluation (1/2)

28 210 212212 21410 8
10 7
10 6
10 5
10 4
10 3
10 2 randtlr × exp_rand(-15, 0)

28 210 212212 21410 8
10 7
10 6
10 5
10 4
10 3
10 2 spatial × exp_rand(-15, 0)

28 210 212212 21410 8
10 7
10 6
10 5
10 4
10 3
10 2 cauchy × exp_rand(-15, 0)

28 210 212212 21410 8
10 7
10 6
10 5
10 4
10 3
10 2 randtlr × urand(0, 1)

28 210 212212 21410 8
10 7
10 6
10 5
10 4
10 3
10 2 spatial × urand(0, 1)

28 210 212212 21410 8
10 7
10 6
10 5
10 4
10 3
10 2 cauchy × urand(0, 1)

Re
la

tiv
e

Re
sid

ua
l

m : matmul-(m, m, m)

cutlass_tf32tf32 cutlass_halfhalf cublas_tf32tc cublas_fp16tc cublas_simt

Test matrices

19 / 24

Accuracy evaluation (2/2)

28 210 212212 21410 8
10 7
10 6
10 5
10 4
10 3

Type 1

28 210 212212 21410 8
10 7
10 6
10 5
10 4
10 3

Type 2

28 210 212212 21410 8
10 7
10 6
10 5
10 4
10 3

Type 3

28 210 212212 21410 8
10 7
10 6
10 5
10 4
10 3

Type 4

Re
la

tiv
e

re
sid

ua
l

m : matmul-(m, m, m)

cutlass_tf32tf32 cutlass_halfhalf cublas_tf32tc cublas_fp16tc cublas_simt

2 150 2 120 2 90 2 60 2 30 20 230 260 290 2120

Value

10 6

10 3

100Re
la

tiv
e

er
ro

r

be
tte

r

(A)(B)(C)

FP32
Our tf32tf32

TF32
FP16

Our halfhalf
Markidis's halfhalf

Type 1 : (A) × (A)

Type 2 : (A) × (B)

Type 3 : (B) × (B)

Type 4 : (A) × (C), (B) × (C), (C) × (C)

20 / 24

Throughput evaluation

1000 4000 8000 12000 16000
Matrix size m : matmul-(m, m, m)

0

10

20

30

40

50

60

P
er

fo
rm

an
ce

 [T
Fl

op
/s

] NVIDIA A100

Our method(FP16-TC)
Our method(TF32-TC)

cuBLAS
FP32 peak

101 102 103
100

101

102

52.0

104.0

19.5

A100

Performance
Max
Min

Pe
rfo

rm
an

ce
 [T

Fl
op

/s
]

Arithmetic intensity [Flop/byte]

Performance
Max
Min

Implementation
cutlass_halfhalf
cutlass_tf32tf32

cublas_simt

We have also measured the power consumption of each method and found
thet our method consumes lower power compared to cuBLAS SGEMM.

21 / 24

To improve the throughput of our implementations...
1 Reduce the shared memory bank conflict. Currently, the shared memory
layout (skew) is not suitable to this error correction method and a lot of
shared memory bank conflicts occur.

2 Use mma.m16n8k16 instruction instead of mma.m16n8k8 for
cutlass halfhalf. By using this instruction, we can reduce the latency.
However, mma.m16n8k16 has an additional RZ between first half 8
accumulations and latter half 8 accumulations. We need to carefully
investigate the effect.

A

B

CA

B

C m:16

n:8

k:16

m:16

n:8

k:8

mma.m16n8k8 mma.m16n8k16

22 / 24

Conclusion
We have improved Markidis’ error correction method and demonstrated that our
SGEMM emulation on Tensor Cores outperforms the theoretical peak
performance of FP32 SIMT Core while achieving the same level of accuracy.

26 29 212 215 218

k : matmul-(16, 16, k)

10 7

10 6

10 5

10 4

10 3

Er
ro

r

FP32 SIMT
Our method

Markidis' method
TensorCore w/o ErrCor

Accuracy

1000 4000 8000 12000 16000
Matrix size m : matmul-(m, m, m)

0

10

20

30

40

50

60

P
er

fo
rm

an
ce

 [T
Fl

op
/s

] NVIDIA A100

Our method(FP16-TC)
Our method(TF32-TC)

cuBLAS
FP32 peak

Throughput

23 / 24

Open problem

1 We haven’t done the theoretical error analysis of avoiding RZ in our
method. Although the RZ for adding CFP32 is avoided, the rounding for
AFP16 ·BFP16 is still RZ.

24 / 24

